1,829 research outputs found

    Optical spectroscopy of complex open 4dd-shell ions Sn7+^{7+}-Sn10+^{10+}

    Get PDF
    We analyze the complex level structure of ions with many-valence-electron open [Kr] 4dmd^\textrm{m} sub-shells (m\textrm{m}=7-4) with ab initio calculations based on configuration-interaction many-body perturbation theory (CI+MBPT). Charge-state-resolved optical and extreme ultraviolet (EUV) spectra of Sn7+^{7+}-Sn10+^{10+} ions were obtained using an electron beam ion trap. Semi-empirical spectral fits carried out with the orthogonal parameters technique and Cowan code calculations lead to 90 identifications of magnetic-dipole transitions and the determination of 79 energy ground-configuration levels, questioning some earlier EUV-line assignments. Our results, the most complete data set available to date for these ground configurations, confirm the ab initio predictive power of CI+MBPT calculations for the these complex electronic systems.Comment: 18 pages, 5 figure

    Study of the 25Mg(d,p)26Mg reaction to constrain the 25Al(p,Îł )26Si resonant reaction rates in nova burning conditions

    Get PDF
    The rate of the 25^{25}Al(p, γ\gamma )26^{26}Si reaction is one of the few key remaining nuclear uncertainties required for predicting the production of the cosmic Îł\gamma -ray emitter 26^{26}Al in explosive burning in novae. This reaction rate is dominated by three key resonances (Jπ=0+J^{\pi }=0^{+}, 1+1^{+} and 3+3^{+}) in 26^{26}Si. Only the 3+3^{+} resonance strength has been directly constrained by experiment. A high resolution measurement of the 25^{25}Mg(d, p) reaction was used to determine spectroscopic factors for analog states in the mirror nucleus, 26^{26}Mg. A first spectroscopic factor value is reported for the 0+0^{+} state at 6.256 MeV, and a strict upper limit is set on the value for the 1+1^{+} state at 5.691 MeV, that is incompatible with an earlier (4^{4}He, 3^{3}He) study. These results are used to estimate proton partial widths, and resonance strengths of analog states in 26^{26}Si contributing to the 25^{25}Al(p, γ\gamma )26^{26}Si reaction rate in nova burning conditions

    The environmental security debate and its significance for climate change

    Get PDF
    Policymakers, military strategists and academics all increasingly hail climate change as a security issue. This article revisits the (comparatively) long-standing “environmental security debate” and asks what lessons that earlier debate holds for the push towards making climate change a security issue. Two important claims are made. First, the emerging climate security debate is in many ways a re-run of the earlier dispute. It features many of the same proponents and many of the same disagreements. These disagreements concern, amongst other things, the nature of the threat, the referent object of security and the appropriate policy responses. Second, given its many different interpretations, from an environmentalist perspective, securitisation of the climate is not necessarily a positive development

    Implementation of the Hierarchical Reference Theory for simple one-component fluids

    Full text link
    Combining renormalization group theoretical ideas with the integral equation approach to fluid structure and thermodynamics, the Hierarchical Reference Theory is known to be successful even in the vicinity of the critical point and for sub-critical temperatures. We here present a software package independent of earlier programs for the application of this theory to simple fluids composed of particles interacting via spherically symmetrical pair potentials, restricting ourselves to hard sphere reference systems. Using the hard-core Yukawa potential with z=1.8/sigma for illustration, we discuss our implementation and the results it yields, paying special attention to the core condition and emphasizing the decoupling assumption's role.Comment: RevTeX, 16 pages, 2 figures. Minor changes, published versio

    Pressure induced structural and dynamical changes in liquid Si. An ab-initio study

    Full text link
    The static and dynamic properties of liquid Si at high-pressure have been studied using the orbital free ab-initio molecular dynamics method. Four thermodynamic states at pressures 4, 8, 14 and 23 GPa are considered. The calculated static structure shows qualitative agreement with the available experimental data. We analize the remarkable structural changes occurring between 8 and 14 GPa along with its effect on several dynamic properties.Comment: 10 pages, 11 figures. Accepted for publication in Journal of Physics: Condensed Matte

    Diel variations of H2O2 in Greenland: A discussion of the cause and effect relationship

    Get PDF
    Atmospheric hydrogen peroxide (H2O2) measurements at Summit, Greenland, in May–June, 1993 exhibited a diel variation, with afternoon highs typically 1–2 parts per billion by volume (ppbv) and nighttime lows about 0.5 ppbv lower. This variation closely followed that for temperature; specific humidity exhibited the same general trend. During a 17-day snowfall-free period, surface snow was accumulating H2O2, apparently from nighttime cocondensation of H2O and H2O2. Previous photochemical modeling (Neftel et al., 1995) suggests that daytime H2O2 should be about 1 ppbv, significantly lower than our measured values. Previous equilibrium partitioning measurements between ice and gas phase (Conklin et al., 1993) suggest that air in equilibrium with H2O2 concentrations measured in surface snow (15–18 ÎŒM) should have an H2O2 concentration 2–3 times what we measured 0.2–3.5 m above the snow surface. A simple eddy diffusion model, with vertical eddy diffusion coefficients calculated from balloon soundings, suggested that atmospheric H2O2 concentrations should be affected by any H2O2 degassed from surface snow. However, field measurements showed the absence of either high concentrations of H2O2 or a measurable concentration gradient between inlets 0.2 and 3 m above the snow. A surface resistance to degassing, that is, slow release of H2O2 from the ice matrix, is a plausible explanation for the differences between observations and modeled atmospheric profiles. Degassing of H2O2 at a rate below our detection limit would still influence measured atmospheric concentrations and help explain the difference between measurements and photochemical modeling. The cumulative evidence suggests that surface snow adjusts slowly to drops in atmospheric H2O2 concentration, over timescales of at least weeks. The H2O2 losses previously observed in pits sampled over more than 1 year are thought to have occurred later in the summer or fall, after the May–July field season
    • 

    corecore